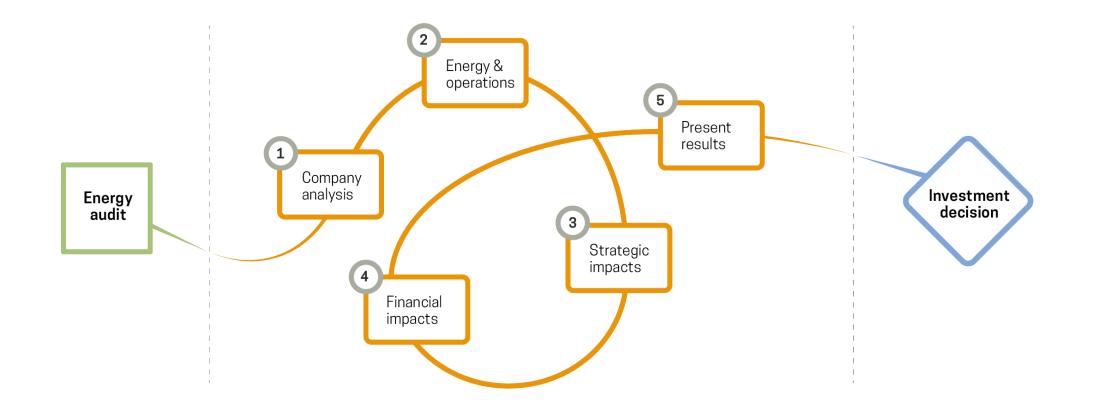


Multiple Benefits Example: Surface Treatment Industry

First Industries, Crissier, Switzerland

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 785131. This document only reflects the authors' views and EASME is not responsible for any use that may be made of the information it contains.


Replacement of rectifiers

First Industries Crissier, Switzerland Source: Catherine Cooremans, University of Lausanne (with Greenwatt Fribourg) Date: XX-month-year

Catherine Cooremans, UNIL

Multiple Benefits Approach

1. First Industries overview

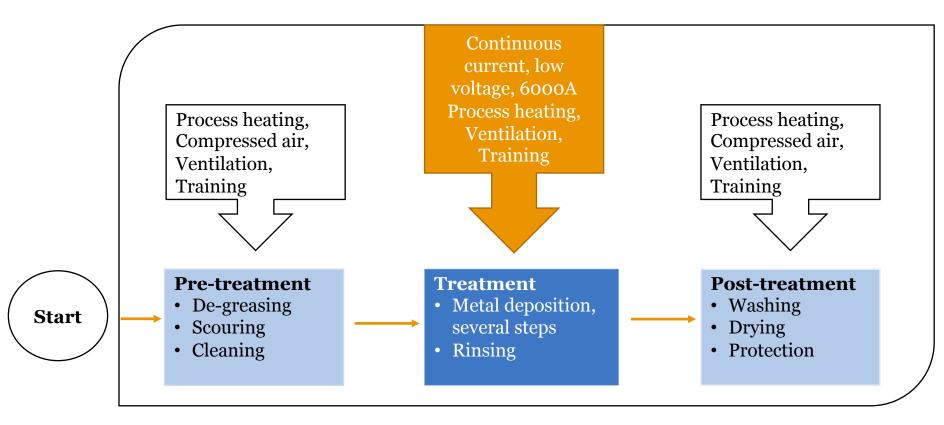
First Industries is a company active in surface treatment of metal pieces (hot galvanizing, electrolytic zinc plating, powder coating, nickel plating, chromium plating)

Key customer segments, value proposition

Applies any type of surface treatment on the metal parts and products provided by customers. Offers flexibility, quality, reliability and fair prices, and highly-personalized service.

2. Energy & operations

Situational analysis


- Rectifiers¹ obsolete > 35 years
- Low performance (50-60%)
- Insufficient capacity → limits number and size of pieces processed simultaneously
- Difficult and expensive to repair

Project description

- Replace rectifiers with high performance electronic models (85-93%)
- Reduced energy consumption
- Cooling system improvement
- More efficient control system

^{1:} A **rectifier**: an electrical device that converts alternating current, which periodically reverses direction, to direct current (DC), which flows in only one direction. The process is known as *rectification*, since it "straightens" the direction of current. (Source: Wikipedia)

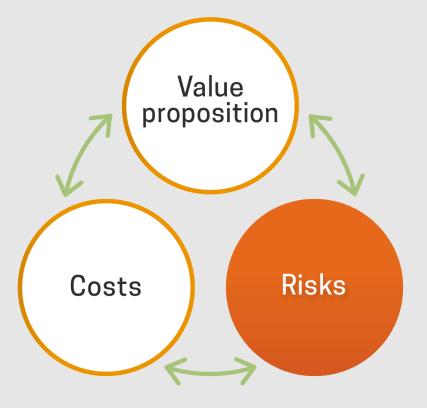
Process analysis: Energy services linked to electrolytic zinc plating process (metals)

Step 2 (cont): Energy analysis

Pre-project

- No metering available
- Estimated average power of 200 kVA consumed (about 50% of rated power)
- Energy consumption: 630 000 kWh/year

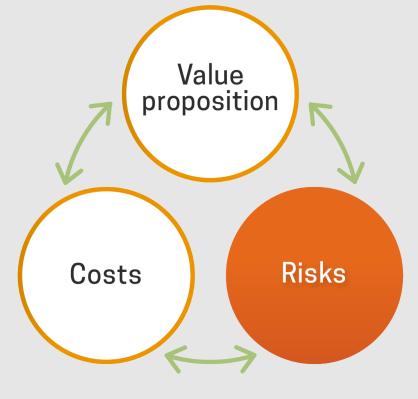
Post-installation


- **10%** improvement
- **63,000 kWh** annual energy consumption savings

Step 3: Strategic analysis

Costs

- Reduced raw material use (chrome, zinc), less material waste
- Reduced cooling water costs
- Reduced energy costs
- Reduced labour costs (fewer overtime hours, fewer pieces to re-make

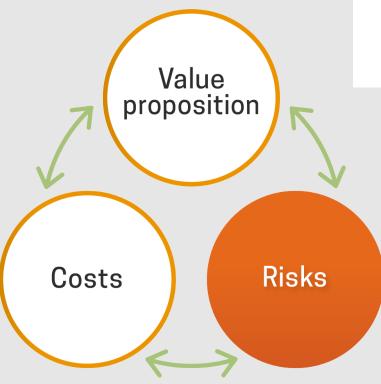


Step 3: Strategic analysis (cont.)

Costs

- Reduced raw material use (chrome, zinc), less material waste
- Reduced cooling water costs
- Reduced energy costs
- Reduced labour costs (fewer overtime hours, fewer pieces to re-make

Risks


- Lower commercial risk
- Lower legal risk
- Reduced risk of breakdowns and failures
- Reduced CO₂ risk

Step 3: Strategic analysis (cont.)

Costs

- Reduced raw material use (chrome, zinc), less material waste
- Reduced cooling water costs
- Reduced energy costs
- Reduced labour costs (fewer overtime hours, fewer pieces to re-make

Value proposition

- More stable product quality
- Higher production capacity (higher accuracy)
- Space gain

Risks

- Lower commercial risk
- Lower legal risk
- Reduced risk of breakdowns and failures
- Reduced CO₂ risk

Step 4: Financial analysis

Without Multiple Benefits		All Benefits	
Net present value (NPV)	10,489 CHF	Net present value (NPV)	1,904,476 CHF
Internal rate of return (IRR)	6.9%	Internal rate of return (IRR)	118%
Simple payback	6 years	Simple payback	0.85 years

Investment duration = 8 years (number of years taken into account to compute NPV and IRR) Discount rate 6%

Contact

Dr. Catherine Cooremans Senior researcher University of Lausanne <u>catherine.cooremans@unil.ch</u>

www.mbenefits.eu